Revealing the frictional transition in shear-thickening suspensions

Cécile Clavaud, Antoine Bérut, Bloen Metzger, Yoël Forterre

Shear thickening: brutal increase in viscosity at a critical shear rate.

(http://www.tuxboard.com/seriez-vous-capable-de-marcher-sur-leau, advertisement for Mach by Hong Leong Bank).

Recent model: frictional transition induced by the presence of short range repulsion.

 $\mu_p \simeq 0$

frictional

 $\mu_p \neq 0$

 $P > P_c$

Our approach: probe the macroscopic friction coefficient μ using pressure imposed experiments.

Newtonian vs. shear-thickening suspensions

Newtonian
large glass beads in viscous fluid

Shear-thickening potato starch in water

Frictional transition by tuning the repulsion

Model system: silica beads in aqueous solutions.

Standard Newtonian suspension (large glass beads)

Shear-thickening suspension (potato starch)

high steady avalanche angle

• low steady avalanche angle

compaction

no compaction

no dilatancy

dilatancy

Change the confining pressure P at constant P_c (constant [NaCl]) and measure the macroscopic friction μ

frictional suspension

frictionless suspension

at low P